
DR SNS RAJALAKSHI COLLEGE OF ARTS AND SCIENCE(AUTONOMOS),

COIMBATORE -641017

16UCA502 - ADVANCED JAVA PROGRAMMING

UNIT I

Introducing Swing: swing is a part of Java Foundation Classes (JFC) that

is used to create window-based applications. It is built on the top of AWT (Abstract

Windowing Toolkit) API and entirely written in java.Unlike AWT, Java Swing

provides platform-independent and lightweight components.The javax.swing

package provides classes for java swing API such as JButton, JTextField, JTextArea,

JRadioButton, JCheckbox, JMenu, JColorChooser etc.

 Display different shapes

Demonstrates how to draw a line using draw() method of Graphics2D class with

Line2D object as an argument.

import java.awt.*;

import java.awt.event.*;

import java.awt.geom.Line2D;

import javax.swing.JApplet;

import javax.swing.JFrame;

public class Main extends JApplet {

 public void init() {

 setBackground(Color.white);

 setForeground(Color.white);

 }

 public void paint(Graphics g) {

 Graphics2D g2 = (Graphics2D) g;

 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

 g2.setPaint(Color.gray);

 int x = 5;

 int y = 7;

 g2.draw(new Line2D.Double(x, y, 200, 200));

 g2.drawString("Line", x, 250);

 }

 public static void main(String s[]) {

 JFrame f = new JFrame("Line");

 f.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 });

 JApplet applet = new Main();

 f.getContentPane().add("Center", applet);

 applet.init();

 f.pack();

 f.setSize(new Dimension(300, 300));

 f.setVisible(true);

 }

}

Handling Events

Java Event classes and Listener interfaces

Steps to perform Event Handling

Following steps are required to perform event handling:

1. Register the component with the Listener

Registration Methods

For registering the component with the Listener, many classes provide the

registration methods. For example:

o Button

o public void addActionListener(ActionListener a){}

o MenuItem

o public void addActionListener(ActionListener a){}

o TextField

o public void addActionListener(ActionListener a){}

o public void addTextListener(TextListener a){}

o TextArea

o public void addTextListener(TextListener a){}

o Checkbox

o public void addItemListener(ItemListener a){}

o Choice

o public void addItemListener(ItemListener a){}

o List

o public void addActionListener(ActionListener a){}

o public void addItemListener(ItemListener a){}

import java.awt.*;

import java.awt.event.*;

class AEvent extends Frame implements ActionListener{

TextField tf;

AEvent(){

//create components

tf=new TextField();

tf.setBounds(60,50,170,20);

Button b=new Button("click me");

b.setBounds(100,120,80,30);

//register listener

b.addActionListener(this);//passing current instance

//add components and set size, layout and visibility

add(b);add(tf);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public void actionPerformed(ActionEvent e){

tf.setText("Welcome");

}

public static void main(String args[]){

new AEvent();

}

}

public void setBounds(int xaxis, int yaxis, int width, int height); have been used in

the above example that sets the position of the component it may be button, textfield

etc.

Delegation Event Model in Java

The Delegation Event model is defined to handle events in GUI programming

languages. The GUI stands for Graphical User Interface, where a user

graphically/visually interacts with the system.

The GUI programming is inherently event-driven; whenever a user initiates an

activity such as a mouse activity, clicks, scrolling, etc., each is known as an event that

is mapped to a code to respond to functionality to the user. This is known as event

handling.

In this section, we will discuss event processing and how to implement the

delegation event model in Java. We will also discuss the different components of an

Event Model.

https://www.javatpoint.com/programming-language
https://www.javatpoint.com/programming-language
https://www.javatpoint.com/gui-full-form
https://www.javatpoint.com/java-tutorial

Event Processing in Java

Java support event processing since Java 1.0. It provides support for AWT (Abstract

Window Toolkit), which is an API used to develop the Desktop application. In Java

1.0, the AWT was based on inheritance. To catch and process GUI events for a

program, it should hold subclass GUI components and override action() or

handleEvent() methods. The below image demonstrates the event processing.

But, the modern approach for event processing is based on the Delegation Model. It

defines a standard and compatible mechanism to generate and process events. In

this model, a source generates an event and forwards it to one or more listeners. The

listener waits until it receives an event. Once it receives the event, it is processed by

the listener and returns it. The UI elements are able to delegate the processing of an

event to a separate function.

The key advantage of the Delegation Event Model is that the application logic is

completely separated from the interface logic.

In this model, the listener must be connected with a source to receive the event

notifications. Thus, the events will only be received by the listeners who wish to

receive them. So, this approach is more convenient than the inheritance-based event

model (in Java 1.0).

https://www.javatpoint.com/java-awt
https://www.javatpoint.com/java-awt

In the older model, an event was propagated up the containment until a component

was handled. This needed components to receive events that were not processed,

and it took lots of time. The Delegation Event model overcame this issue.

Basically, an Event Model is based on the following three components:

o Events

o Events Sources

o Events Listeners

Events

The Events are the objects that define state change in a source. An event can be

generated as a reaction of a user while interacting with GUI elements. Some of the

event generation activities are moving the mouse pointer, clicking on a button,

pressing the keyboard key, selecting an item from the list, and so on. We can also

consider many other user operations as events.

The Events may also occur that may be not related to user interaction, such as a

timer expires, counter exceeded, system failures, or a task is completed, etc. We can

define events for any of the applied actions.

Event Sources

A source is an object that causes and generates an event. It generates an event when

the internal state of the object is changed. The sources are allowed to generate

several different types of events.

A source must register a listener to receive notifications for a specific event. Each

event contains its registration method. Below is an example:

1. public void addTypeListener (TypeListener e1)

From the above syntax, the Type is the name of the event, and e1 is a reference to the

event listener. For example, for a keyboard event listener, the method will be called

as addKeyListener(). For the mouse event listener, the method will be called

as addMouseMotionListener(). When an event is triggered using the respected

source, all the events will be notified to registered listeners and receive the event

object. This process is known as event multicasting. In few cases, the event

notification will only be sent to listeners that register to receive them.

Some listeners allow only one listener to register. Below is an example:

1. public void addTypeListener(TypeListener e2) throws java.util.TooManyListenersE

xception

From the above syntax, the Type is the name of the event, and e2 is the event

listener's reference. When the specified event occurs, it will be notified to the

registered listener. This process is known as unicasting events.

A source should contain a method that unregisters a specific type of event from the

listener if not needed. Below is an example of the method that will remove the event

from the listener.

1. public void removeTypeListener(TypeListener e2?)

From the above syntax, the Type is an event name, and e2 is the reference of the

listener. For example, to remove the keyboard listener,

the removeKeyListener() method will be called.

The source provides the methods to add or remove listeners that generate the events.

For example, the Component class contains the methods to operate on the different

types of events, such as adding or removing them from the listener.

Event Listeners

An event listener is an object that is invoked when an event triggers. The listeners

require two things; first, it must be registered with a source; however, it can be

registered with several resources to receive notification about the events. Second, it

must implement the methods to receive and process the received notifications.

The methods that deal with the events are defined in a set of interfaces. These

interfaces can be found in the java.awt.event package.

For example, the MouseMotionListener interface provides two methods when the

mouse is dragged and moved. Any object can receive and process these events if it

implements the MouseMotionListener interface.

Types of Events

The events are categories into the following two categories:

The Foreground Events:

The foreground events are those events that require direct interaction of the user.

These types of events are generated as a result of user interaction with the GUI

component. For example, clicking on a button, mouse movement, pressing a

keyboard key, selecting an option from the list, etc.

The Background Events :

The Background events are those events that result from the interaction of the end-

user. For example, an Operating system interrupts system failure (Hardware or

Software).

To handle these events, we need an event handling mechanism that provides control

over the events and responses.

The Delegation Model

The Delegation Model is available in Java since Java 1.1. it provides a new

delegation-based event model using AWT to resolve the event problems. It provides

a convenient mechanism to support complex Java programs.

Design Goals

The design goals of the event delegation model are as following:

o It is easy to learn and implement

o It supports a clean separation between application and GUI code.

o It provides robust event handling program code which is less error-prone

(strong compile-time checking)

o It is Flexible, can enable different types of application models for event flow

and propagation.

o It enables run-time discovery of both the component-generated events as well

as observable events.

o It provides support for the backward binary compatibility with the previous

model.

Let's implement it with an example:

Java Program to Implement the Event Delegation Model

The below is a Java program to handle events implementing the event deligation

model:

TestApp.java:

1. import java.awt.*;

2. import java.awt.event.*;

3.

4. public class TestApp {

5. public void search() {

6. // For searching

7. System.out.println("Searching...");

8. }

9. public void sort() {

10. // for sorting

11. System.out.println("Sorting....");

12. }

13.

14. static public void main(String args[]) {

15. TestApp app = new TestApp();

16. GUI gui = new GUI(app);

17. }

18. }

19.

20. class Command implements ActionListener {

21. static final int SEARCH = 0;

22. static final int SORT = 1;

23. int id;

24. TestApp app;

25.

26. public Command(int id, TestApp app) {

27. this.id = id;

28. this.app = app;

29. }

30.

31. public void actionPerformed(ActionEvent e) {

32. switch(id) {

33. case SEARCH:

34. app.search();

35. break;

36. case SORT:

37. app.sort();

38. break;

39. }

40. }

41. }

42.

43. class GUI {

44.

45. public GUI(TestApp app) {

46. Frame f = new Frame();

47. f.setLayout(new FlowLayout());

48.

49. Command searchCmd = new Command(Command.SEARCH, app);

50. Command sortCmd = new Command(Command.SORT, app);

51.

52. Button b;

53. f.add(b = new Button("Search"));

54. b.addActionListener(searchCmd);

55. f.add(b = new Button("Sort"));

56. b.addActionListener(sortCmd);

57.

58. List l;

59. f.add(l = new List());

60. l.add("Alphabetical");

61. l.add("Chronological");

62. l.addActionListener(sortCmd);

63. f.pack();

64.

65. f.show();

66. }

67. }

Output:

java MouseListener Interface

The Java MouseListener is notified whenever you change the state of mouse. It is

notified against MouseEvent. The MouseListener interface is found in java.awt.event

package. It has five methods.

Methods of MouseListener interface

The signature of 5 methods found in MouseListener interface are given below:

1. public abstract void mouseClicked(MouseEvent e);

2. public abstract void mouseEntered(MouseEvent e);

3. public abstract void mouseExited(MouseEvent e);

4. public abstract void mousePressed(MouseEvent e);

5. public abstract void mouseReleased(MouseEvent e);

Java MouseListener Example

1. import java.awt.*;

2. import java.awt.event.*;

3. public class MouseListenerExample extends Frame implements MouseListener{

4. Label l;

5. MouseListenerExample(){

6. addMouseListener(this);

7.

8. l=new Label();

9. l.setBounds(20,50,100,20);

10. add(l);

11. setSize(300,300);

12. setLayout(null);

13. setVisible(true);

14. }

15. public void mouseClicked(MouseEvent e) {

16. l.setText("Mouse Clicked");

17. }

18. public void mouseEntered(MouseEvent e) {

19. l.setText("Mouse Entered");

20. }

21. public void mouseExited(MouseEvent e) {

22. l.setText("Mouse Exited");

23. }

24. public void mousePressed(MouseEvent e) {

25. l.setText("Mouse Pressed");

26. }

27. public void mouseReleased(MouseEvent e) {

28. l.setText("Mouse Released");

29. }

30. public static void main(String[] args) {

31. new MouseListenerExample();

32. }

33. }

Output:

Java LayoutManagers

The LayoutManagers are used to arrange components in a particular manner.

The Java LayoutManagers facilitates us to control the positioning and size of the

components in GUI forms. LayoutManager is an interface that is implemented by all

the classes of layout managers. There are the following classes that represent the

layout managers:

1. java.awt.BorderLayout

2. java.awt.FlowLayout

3. java.awt.GridLayout

4. java.awt.CardLayout

5. java.awt.GridBagLayout

6. javax.swing.BoxLayout

7. javax.swing.GroupLayout

8. javax.swing.ScrollPaneLayout

9. javax.swing.SpringLayout etc.

Java BorderLayout

The BorderLayout is used to arrange the components in five regions: north, south,

east, west, and center. Each region (area) may contain one component only. It is the

default layout of a frame or window. The BorderLayout provides five constants for

each region:

1. public static final int NORTH

2. public static final int SOUTH

3. public static final int EAST

4. public static final int WEST

5. public static final int CENTER

Constructors of BorderLayout class:

o BorderLayout(): creates a border layout but with no gaps between the

components.

o BorderLayout(int hgap, int vgap): creates a border layout with the given

horizontal and vertical gaps between the components.

Example of BorderLayout class: Using BorderLayout() constructor

FileName: Border.java

1. import java.awt.*;

2. import javax.swing.*;

3.

4. public class Border

5. {

6. JFrame f;

7. Border()

8. {

9. f = new JFrame();

10.

11. // creating buttons

12. JButton b1 = new JButton("NORTH");; // the button will be labeled as NORTH

13. JButton b2 = new JButton("SOUTH");; // the button will be labeled as SOUTH

14. JButton b3 = new JButton("EAST");; // the button will be labeled as EAST

15. JButton b4 = new JButton("WEST");; // the button will be labeled as WEST

16. JButton b5 = new JButton("CENTER");; // the button will be labeled as CENTER

17.

18. f.add(b1, BorderLayout.NORTH); // b1 will be placed in the North Direction

19. f.add(b2, BorderLayout.SOUTH); // b2 will be placed in the South Direction

20. f.add(b3, BorderLayout.EAST); // b2 will be placed in the East Direction

21. f.add(b4, BorderLayout.WEST); // b2 will be placed in the West Direction

22. f.add(b5, BorderLayout.CENTER); // b2 will be placed in the Center

23.

24. f.setSize(300, 300);

25. f.setVisible(true);

26. }

27. public static void main(String[] args) {

28. new Border();

29. }

30. }

Output:

Example of BorderLayout class: Using BorderLayout(int hgap, int vgap) constructor

The following example inserts horizontal and vertical gaps between buttons using

the parameterized constructor BorderLayout(int hgap, int gap)

FileName: BorderLayoutExample.java

1. // import statement

2. import java.awt.*;

3. import javax.swing.*;

4. public class BorderLayoutExample

5. {

6. JFrame jframe;

7. // constructor

8. BorderLayoutExample()

9. {

10. // creating a Frame

11. jframe = new JFrame();

12. // create buttons

13. JButton btn1 = new JButton("NORTH");

14. JButton btn2 = new JButton("SOUTH");

15. JButton btn3 = new JButton("EAST");

16. JButton btn4 = new JButton("WEST");

17. JButton btn5 = new JButton("CENTER");

18. // creating an object of the BorderLayout class using

19. // the parameterized constructor where the horizontal gap is 20

20. // and vertical gap is 15. The gap will be evident when buttons are placed

21. // in the frame

22. jframe.setLayout(new BorderLayout(20, 15));

23. jframe.add(btn1, BorderLayout.NORTH);

24. jframe.add(btn2, BorderLayout.SOUTH);

25. jframe.add(btn3, BorderLayout.EAST);

26. jframe.add(btn4, BorderLayout.WEST);

27. jframe.add(btn5, BorderLayout.CENTER);

28. jframe.setSize(300,300);

29. jframe.setVisible(true);

30. }

31. // main method

32. public static void main(String argvs[])

33. {

34. new BorderLayoutExample();

35. }

36. }

Output:

Java JComponent

The JComponent class is the base class of all Swing components except top-level

containers. Swing components whose names begin with "J" are descendants of the

JComponent class. For example, JButton, JScrollPane, JPanel, JTable etc. But, JFrame

and JDialog don't inherit JComponent class because they are the child of top-level

containers.

The JComponent class extends the Container class which itself extends Component.

The Container class has support for adding components to the container.

Java JComponent Example

1. import java.awt.Color;

2. import java.awt.Graphics;

3. import javax.swing.JComponent;

4. import javax.swing.JFrame;

5. class MyJComponent extends JComponent {

6. public void paint(Graphics g) {

7. g.setColor(Color.green);

8. g.fillRect(30, 30, 100, 100);

9. }

10. }

11. public class JComponentExample {

12. public static void main(String[] arguments) {

13. MyJComponent com = new MyJComponent();

14. // create a basic JFrame

15. JFrame.setDefaultLookAndFeelDecorated(true);

16. JFrame frame = new JFrame("JComponent Example");

17. frame.setSize(300,200);

18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

19. // add the JComponent to main frame

20. frame.add(com);

21. frame.setVisible(true);

22. }

23. }

Text Components

The object of a TextField class is a text component that allows a user to

enter a single line text and edit it. It inherits TextComponent class, which further

inherits Component class. When we enter a key in the text field (like key pressed,

key released or key typed), the event is sent to TextField..

Java JTextField Example

1. import javax.swing.*;

2. class TextFieldExample

3. {

4. public static void main(String args[])

5. {

6. JFrame f= new JFrame("TextField Example");

7. JTextField t1,t2;

8. t1=new JTextField("Welcome to Javatpoint.");

9. t1.setBounds(50,100, 200,30);

10. t2=new JTextField("AWT Tutorial");

11. t2.setBounds(50,150, 200,30);

12. f.add(t1); f.add(t2);

13. f.setSize(400,400);

14. f.setLayout(null);

15. f.setVisible(true);

16. }

17. }

Output:

Menu

The object of MenuItem class adds a simple labeled menu item on menu.

The items used in a menu must belong to the MenuItem or any of its subclass. The

object of Menu class is a pull down menu component which is displayed on the

menu bar. It inherits the MenuItem class.

ava AWT MenuItem and Menu

The object of MenuItem class adds a simple labeled menu item on menu. The items

used in a menu must belong to the MenuItem or any of its subclass.

The object of Menu class is a pull down menu component which is displayed on the

menu bar. It inherits the MenuItem class.

AWT MenuItem class declaration

1. public class MenuItem extends MenuComponent implements Accessible

AWT Menu class declaration

1. public class Menu extends MenuItem implements MenuContainer, Accessible

Java AWT MenuItem and Menu Example

1. import java.awt.*;

2. class MenuExample

3. {

4. MenuExample(){

5. Frame f= new Frame("Menu and MenuItem Example");

6. MenuBar mb=new MenuBar();

7. Menu menu=new Menu("Menu");

8. Menu submenu=new Menu("Sub Menu");

9. MenuItem i1=new MenuItem("Item 1");

10. MenuItem i2=new MenuItem("Item 2");

11. MenuItem i3=new MenuItem("Item 3");

12. MenuItem i4=new MenuItem("Item 4");

13. MenuItem i5=new MenuItem("Item 5");

14. menu.add(i1);

15. menu.add(i2);

16. menu.add(i3);

17. submenu.add(i4);

18. submenu.add(i5);

19. menu.add(submenu);

20. mb.add(menu);

21. f.setMenuBar(mb);

22. f.setSize(400,400);

23. f.setLayout(null);

24. f.setVisible(true);

25. }

26. public static void main(String args[])

27. {

28. new MenuExample();

29. }

30. }

Output:

Java Clock class

Java Clock class is used to provide an access to the current, date and time using a

time zone. It inherits the

Object class.

Because all date-time

classes contain a now()

function that uses the

system clock in the

default time zone,

using the Clock class is

not required. The

aim of the Clock class is

to allow you to plug in another clock whenever you need it. Instead of using a static

method, applications utilise an object to get the current time. It simplifies the testing

process. A method that requires a current instant can take a Clock as a parameter.

Java Clock Class Declaration

Let's see the declaration of java.time.Clock class.

1. public abstract class Clock extends Object

Methods of Java Clock Class

Java Clock class Example: getZone()

ClockExample1.java

1. import java.time.Clock;

2. public class ClockExample1 {

3. public static void main(String[] args) {

4. Clock c = Clock.systemDefaultZone();

5. System.out.println(c.getZone());

6. }

7. }

Test it Now

Output:

Asia/Calcutta

Java Clock class Example: instant()

ClockExample2.java

1. import java.time.Clock;

2. public class ClockExample2 {

3. public static void main(String[] args) {

4. Clock c = Clock.systemUTC();

5. System.out.println(c.instant());

https://compiler.javatpoint.com/opr/test.jsp?filename=ClockExample1

6. }

7. }

Test it Now

Output:

2017-01-14T07:11:07.748Z

Java Clock class Example: systemUTC()

ClockExample3.java

1. import java.time.Clock;

2. public class ClockExample3 {

3. public static void main(String[] args) {

4. Clock c = Clock.systemUTC();

5. System.out.println(c.instant());

6. }

7. }

Test it Now

Output:

2017-01-14T07:11:07.748Z

https://compiler.javatpoint.com/opr/test.jsp?filename=ClockExample2
https://compiler.javatpoint.com/opr/test.jsp?filename=ClockExample3

