DR SNS RAJALAKSHI COLLEGE OF ARTS AND SCIENCE(AUTONOMOS),
COIMBATORE -641017

16UCA502 - ADVANCED JAVA PROGRAMMING

UNIT 1

Introducing Swing: swingis a part of Java Foundation Classes (JFC) that
is used to create window-based applications. It is built on the top of AWT (Abstract
Windowing Toolkit) API and entirely written in java.Unlike AWT, Java Swing
provides platform-independent and lightweight components.The javax.swing
package provides classes for java swing API such as JButton, JTextField, JTextArea,

JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Difference between AWT and Swing

There are many differences between java awt and swing that are given below.

No. JavaAWT Java Swing

1) AWT components are platform-dependent. Java swing components are platform-independent.

2) AWT components are heavyweight. Swing components are lightweight.

3 AWT doesn't support pluggable look and feel. Swing supports pluggable look and feel,

- AWT provides less components than Swing. Swing provides more powerful components such
as tables, lists, scrollpanes, colorchooser,
tabbedpane etc.

5) AWT doesn't follows MVC(Mcdel View Controller) where model represents | Swing follows MVC,
data, view represents presentation and controller acts as an interface between

madel and wiew.

Hierarchy of Java Swing classes

The hierarchy of java swing APl is given below.

Object
1
Compenent iLabel
£l
IList
Container JComponent fable
L
JComboBox
Window Panel Mshder
[F]
IMenu
Applet
AbstractButton
Frame Dialog
JButton

Commonly used Methods of Component class

The metheds of Compenent class are widely used in java swing that are given below.

Method

public void add{Component ¢}

public void setSize(int width,int height)
public veid setlayout(LayoutManager m)

public void setVisible(boolean b}

Description

add a component on another component.
sets size of the component.

sets the layout manager for the component,

sets the visibility of the component. It is by default false.

Display different shapes
Demonstrates how to draw a line using draw() method of Graphics2D class with

Line2D object as an argument.

import java.awt.”;

import java.awt.event.”;
import java.awt.geom.Line2D;
import javax.swing.JApplet;

import javax.swing.JFrame;

public class Main extends JApplet {
public void init() {
setBackground(Color.white);
setForeground(Color.white);
}
public void paint(Graphics g) {
Graphics2D g2 = (Graphics2D) g;
g2.setRenderingHint(RenderingHints. KEY_ANTIALIASING,
RenderingHints. VALUE_ANTIALIAS_ON);
g2.setPaint(Color.gray);
intx=>5;
inty=7;
g2.draw(new Line2D.Double(x, y, 200, 200));
g2.drawString("Line", x, 250);
)
public static void main(String s|]) {
JFrame f = new JFrame("Line");
f.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);

}
b
JApplet applet = new Main();
f.getContentPane().add("Center", applet);
applet.init();

f.pack();
f.setSize(new Dimension(300, 300));
f.setVisible(true);

Handling Events

Java Event classes and Listener interfaces

Event Classes Listener Interfaces

ActionBvent ActionListener

MouseEvent Mouselistener and MouseMotionListener
MouseWheelEvent MouseWheelListener

KeyEvent KeyListener

IternEvent IternListener

TextEvent Textlistener

AdjustmentEvent AdjustrnentListenar

WindowEvent
ComponentEvent
ContainerEvent

FocusEvent

WindowlListener
Compaonentlistener
ContainerListener

FocusListener

Steps to perform Event Handling

Following steps are required to perform event handling:
1. Register the component with the Listener

Registration Methods

For registering the component with the Listener, many classes provide the

registration methods. For example:

o Button
o public void addActionListener(ActionListener a){}
o Menultem
o public void add ActionListener(ActionListener a){}
o TextField
o public void addActionListener(ActionListener a)({}
o public void addTextListener(TextListener a){}
o TextArea
o public void addTextListener(TextListener a){}
o Checkbox
o public void addItemListener(ItemListener a){}
o Choice
o public void addItemListener(ItemListener a){}
o List
o public void addActionListener(ActionListener a){}

o public void addItemListener(ItemListener a){}

import java.awt.*;

import java.awt.event.”;

class AEvent extends Frame implements ActionListener{
TextField tf;

AEvent(){

/ / create components

tf=new TextField();
tf.setBounds(60,50,170,20);
Button b=new Button("click me");

b.setBounds(100,120,80,30);

/ / register listener

b.addActionListener(this);/ / passing current instance

//add components and set size, layout and visibility
add(b);add(tf);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public void actionPerformed(ActionEvent e){
tf.setText("Welcome");

}

public static void main(String args|[]){

new AEvent();

}

}

public void setBounds(int xaxis, int yaxis, int width, int height); have been used in
the above example that sets the position of the component it may be button, textfield

etc.

‘Welcome |

clickme

Delegation Event Model in Java

The Delegation Event model is defined to handle events in GUI programming

languages. The GUlstands for Graphical User Interface, where a user

graphically/visually interacts with the system.

The GUI programming is inherently event-driven; whenever a user initiates an
activity such as a mouse activity, clicks, scrolling, etc., each is known as an event that
is mapped to a code to respond to functionality to the user. This is known as event

handling.

In this section, we will discuss event processing and how to implement the
delegation event model in Java. We will also discuss the different components of an

Event Model.

https://www.javatpoint.com/programming-language
https://www.javatpoint.com/programming-language
https://www.javatpoint.com/gui-full-form
https://www.javatpoint.com/java-tutorial

Event Processing in Java

Java support event processing since Java 1.0. It provides support for AWT (_Abstract

Window Toolkit), which is an API used to develop the Desktop application. In Java

1.0, the AWT was based on inheritance. To catch and process GUI events for a
program, it should hold subclass GUI components and override action() or

handleEvent() methods. The below image demonstrates the event processing.

Event Source

Creates

Event Object

Listener
Interface < Implemeants

Listener Object PFIE———
onEvent (EventObij)

onEvent (EventOhbj)

But, the modern approach for event processing is based on the Delegation Model. It
defines a standard and compatible mechanism to generate and process events. In
this model, a source generates an event and forwards it to one or more listeners. The
listener waits until it receives an event. Once it receives the event, it is processed by
the listener and returns it. The Ul elements are able to delegate the processing of an

event to a separate function.

The key advantage of the Delegation Event Model is that the application logic is

completely separated from the interface logic.

In this model, the listener must be connected with a source to receive the event
notifications. Thus, the events will only be received by the listeners who wish to
receive them. So, this approach is more convenient than the inheritance-based event

model (in Java 1.0).

https://www.javatpoint.com/java-awt
https://www.javatpoint.com/java-awt

In the older model, an event was propagated up the containment until a component
was handled. This needed components to receive events that were not processed,

and it took lots of time. The Delegation Event model overcame this issue.
Basically, an Event Model is based on the following three components:

o Events
o Events Sources

o Events Listeners
Events

The Events are the objects that define state change in a source. An event can be
generated as a reaction of a user while interacting with GUI elements. Some of the
event generation activities are moving the mouse pointer, clicking on a button,
pressing the keyboard key, selecting an item from the list, and so on. We can also

consider many other user operations as events.

The Events may also occur that may be not related to user interaction, such as a
timer expires, counter exceeded, system failures, or a task is completed, etc. We can

define events for any of the applied actions.
Event Sources

A source is an object that causes and generates an event. It generates an event when
the internal state of the object is changed. The sources are allowed to generate

several different types of events.

A source must register a listener to receive notifications for a specific event. Each

event contains its registration method. Below is an example:
public void addTypeListener (TypeListener el)

From the above syntax, the Type is the name of the event, and el is a reference to the

event listener. For example, for a keyboard event listener, the method will be called

as addKeyListener(). For the mouse event listener, the method will be called
as addMouseMotionListener(). When an event is triggered using the respected
source, all the events will be notified to registered listeners and receive the event
object. This process is known as event multicasting. In few cases, the event

notification will only be sent to listeners that register to receive them.
Some listeners allow only one listener to register. Below is an example:

public void addTypeListener(TypeListener e2) throws java.util. TooManyListenersE

xception

From the above syntax, the Type is the name of the event, and e2 is the event
listener's reference. When the specified event occurs, it will be notified to the

registered listener. This process is known as unicasting events.

A source should contain a method that unregisters a specific type of event from the
listener if not needed. Below is an example of the method that will remove the event

from the listener.
public void removeTypeListener(TypeListener e2?)

From the above syntax, the Type is an event name, and e2 is the reference of the
listener. For example, to remove the keyboard listener,

the removeKeyListener() method will be called.

The source provides the methods to add or remove listeners that generate the events.
For example, the Component class contains the methods to operate on the different

types of events, such as adding or removing them from the listener.
Event Listeners

An event listener is an object that is invoked when an event triggers. The listeners

require two things; first, it must be registered with a source; however, it can be

registered with several resources to receive notification about the events. Second, it

must implement the methods to receive and process the received notifications.

The methods that deal with the events are defined in a set of interfaces. These

interfaces can be found in the java.awt.event package.

For example, the MouseMotionListener interface provides two methods when the
mouse is dragged and moved. Any object can receive and process these events if it

implements the MouseMotionListener interface.

Types of Events

The events are categories into the following two categories:
The Foreground Events:

The foreground events are those events that require direct interaction of the user.
These types of events are generated as a result of user interaction with the GUI
component. For example, clicking on a button, mouse movement, pressing a

keyboard key, selecting an option from the list, etc.
The Background Events :

The Background events are those events that result from the interaction of the end-
user. For example, an Operating system interrupts system failure (Hardware or

Software).

To handle these events, we need an event handling mechanism that provides control

over the events and responses.
The Delegation Model

The Delegation Model is available in Java since Java 1.1. it provides a new
delegation-based event model using AWT to resolve the event problems. It provides

a convenient mechanism to support complex Java programs.

¥ *® N o ok LW b=

Design Goals

The design goals of the event delegation model are as following;:

o

o

It is easy to learn and implement
It supports a clean separation between application and GUI code.

It provides robust event handling program code which is less error-prone

(strong compile-time checking)

It is Flexible, can enable different types of application models for event flow
and propagation.

It enables run-time discovery of both the component-generated events as well

as observable events.

It provides support for the backward binary compatibility with the previous

model.

Let's implement it with an example:

Java Program to Implement the Event Delegation Model

The below is a Java program to handle events implementing the event deligation

model:

TestApp.java:

import java.awt.”;

import java.awt.event.*;

public class TestApp {

public void search() {

}

// For searching

System.out.printIn("Searching...");

public void sort() {

10.
11.
12.

// for sorting
System.out.printIn("Sorting....");

13.

14.
15.
16.
17.
18.

static public void main(String args|]) {
TestApp app = new TestApp();
GUI gui = new GUI(app);

19.

20

21.
22.
23.
24.

. class Command implements ActionListener {
static final int SEARCH = 0;

static final int SORT = 1;

int id;

TestApp app;

25.

26.
27.
28.
29.

public Command(int id, TestApp app) {
this.id = id;
this.app = app;

30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

public void actionPerformed(ActionEvent e) {
switch(id) {
case SEARCH:
app.search();
break;
case SORT:

app.sort();
break;

41

-}

42.

43

. class GUI {

44.

45.
46.
47.

public GUI(TestApp app) {
Frame f = new Frame();

t.setLayout(new FlowLayout());

48.

49.
50.

Command searchCmd = new Command(Command.SEARCH, app);

Command sortCmd = new Command(Command.SORT, app);

51.

52.
53.
54.
55.
56.

Button b;

f.add(b = new Button("Search"));
b.addActionListener(searchCmd);
f.add(b = new Button("Sort"));
b.add ActionListener(sortCmd);

57.

58.
59.
60.
61.
62.
63.

List1;

f.add(l = new List());
l.add("Alphabetical");
l.add("Chronological");
l.addActionListener(sortCmd);
f.pack();

64.

65.
66.

67

f.show();

-}

Output:

AN e

Alphabetical

’m 50rt| Chronological

java MouseListener Interface

The Java MouseListener is notified whenever you change the state of mouse. It is
notified against MouseEvent. The MouseListener interface is found in java.awt.event

package. It has five methods.
Methods of MouseListener interface
The signature of 5 methods found in MouseListener interface are given below:

public abstract void mouseClicked(MouseEvent e);
public abstract void mouseEntered(MouseEvent e);
public abstract void mouseExited(MouseEvent e);

public abstract void mousePressed(MouseEvent e);

public abstract void mouseReleased(MouseEvent e);

Java MouseListener Example

import java.awt.”;

import java.awt.event.”;

public class MouseListenerExample extends Frame implements MouseListener{

Label I;

MouseListenerExample(){

addMouseListener(this);

l=new Label|();
l.setBounds(20,50,100,20);
add(l);
setSize(300,300);
setLayout(null);
setVisible(true);

}

public void mouseClicked(MouseEvent e) {
l.setText("Mouse Clicked");

}

public void mouseEntered(MouseEvent e) {
l.setText("Mouse Entered");

}

public void mouseExited(MouseEvent e) {
L.setText("Mouse Exited");

}

public void mousePressed(MouseEvent e) {
l.setText("Mouse Pressed");

}

public void mouseReleased(MouseEvent e) {

lL.setText("Mouse Released");
}

30. public static void main(String[] args) {

32.}
33.)

new MouseListenerExample();

Output:

|5}

Mouse Entered

Java LayoutManagers

The LayoutManagers are used to arrange components in a particular manner.
The Java LayoutManagers facilitates us to control the positioning and size of the
components in GUI forms. LayoutManager is an interface that is implemented by all
the classes of layout managers. There are the following classes that represent the

layout managers:

=

java.awt.BorderLayout
java.awt.FlowLayout
java.awt.GridLayout
java.awt.CardLayout
java.awt.GridBagLayout
javax.swing.BoxLayout
javax.swing.GroupLayout

javax.swing.ScrollPaneLayout

Y ® N & g &= W D

javax.swing.SpringLayout etc.

¥ *® N o ok W Db o=

Java BorderLayout

The BorderLayout is used to arrange the components in five regions: north, south,
east, west, and center. Each region (area) may contain one component only. It is the
default layout of a frame or window. The BorderLayout provides five constants for

each region:

1. public static final int NORTH
public static final int SOUTH
public static final int EAST

public static final int WEST

o = WD

public static final int CENTER

Constructors of BorderLayout class:

o BorderLayout(): creates a border layout but with no gaps between the

components.

o BorderLayout(int hgap, int vgap): creates a border layout with the given

horizontal and vertical gaps between the components.
Example of BorderLayout class: Using BorderLayout() constructor
FileName: Border java

import java.awt.”;

import javax.swing.*;

public class Border

{

JFrame f;

Border()
{

f = new JFrame();

11. // creating buttons

12. JButton bl = new JButton("NORTH");; // the button will be labeled as NORTH
13. JButton b2 = new JButton("SOUTH");; // the button will be labeled as SOUTH
14.]JButton b3 = new JButton("EAST");; // the button will be labeled as EAST

15. JButton b4 = new JButton("WEST");; // the button will be labeled as WEST

16. JButton b5 = new JButton("CENTER");; // the button will be labeled as CENTER
17.

18. f.add(bl, BorderLayout. NORTH); // bl will be placed in the North Direction
19. f.add(b2, BorderLayout.SOUTH); // b2 will be placed in the South Direction
20. f.add(b3, BorderLayout.EAST); // b2 will be placed in the East Direction

21. f.add(b4, BorderLayout.WEST); // b2 will be placed in the West Direction

22. f.add(b5, BorderLayout.CENTER); // b2 will be placed in the Center

23.

24. f.setSize(300, 300);

25. f.setVisible(true);

26. }

27. public static void main(String][] args) {

28. new Border();

29.}

30. }

Output:

Y 0 N O = W DN

NN N N NN B |, | | | | e |,
IS R N e T e R A S L R T A R e

Example of BorderLayout class: Using BorderLayout(int hgap, int vgap) constructor

The following example inserts horizontal and vertical gaps between buttons using

the parameterized constructor BorderLayout(int hgap, int gap)
FileName: BorderLayoutExample.java

// import statement
import java.awt.*;
import javax.swing.*;
public class BorderLayoutExample
{
JFrame jframe;
// constructor
BorderLayoutExample()
{
// creating a Frame
jframe = new JFrame();
// create buttons
JButton btnl = new JButton("NORTH");
JButton btn2 = new JButton("SOUTH");
JButton btn3 = new JButton("EAST");
JButton btn4 = new JButton("WEST");
JButton btn5 = new JButton("CENTER");
// creating an object of the BorderLayout class using
// the parameterized constructor where the horizontal gap is 20
// and vertical gap is 15. The gap will be evident when buttons are placed
// in the frame
jframe.setLayout(new BorderLayout(20, 15));
jframe.add(btnl, BorderLayout. NORTH);
jframe.add(btn2, BorderLayout.SOUTH);
jframe.add(btn3, BorderLayout.EAST);

26. jframe.add(btn4, BorderLayout. WEST);
27. jframe.add(btn5, BorderLayout. CENTER);

28. jframe.setSize(300,300);
29. jframe.setVisible(true);
30. }

31. // main method

32. public static void main(String argvs[])

33. {

34. new BorderLayoutExample();

35.)
36.)

Output:

&) - X
NORTH

WEST CENTER EAST
SOUTH

Java JComponent

The JComponent class is the base class of all Swing components except top-level
containers. Swing components whose names begin with "]" are descendants of the
JComponent class. For example, JButton, JScrollPane, JPanel, JTable etc. But, JFrame

and JDialog don't inherit JComponent class because they are the child of top-level

containers.
Fields
Modifier and Type Field Description
protected accessibleContext The AccessibleContext associated with this JComponent.

AccessibleContext

protectedEventlistenerList | listenerList A list of event listeners for this component.

static String TOOL_TIP_TEXT_KEY The comment to display when the cursor is over the
companent, also known as a "value tip", "flyover help”, or
"flyower label”

protected ComponentUl | ui The look and feel delegate for this component.

static int UMDEFINED_COMNDITION It is & constant used by some of the APIs to mean that no
condition is defined,

static int WHEN_ANCESTCR_OF_FOCUSED_COMPOMENT | It is a constant used for registerKeyboard&ction that means
that the command should be invoked when the receiving
component is an ancestor of the focused component or is
itself the focused component.

static int WHEN_FOCUSED It is a constant used for registerkeyboardAction that means
that the command sheould be invoked when the component
has the focus,

static int WHEN_IN_FOCUSED WINDOW Constant used for registerKeyboardAction that means that

the command should be invoked when the receiving
compaonent is in the window that has the focus or is itself

the focused component.

 The JComponent class extends the Container class which itself extends Component.

The Container class has support for adding components to the container.

A N L o

Constructor

Constructor

JComponent])

Useful Methods

Modifier and

void
void
woid

woid

void

protected void
void

void

String

Container

TransferHandler

Description

Default JComponent constructor

Method

setActionMapiactionMap am)
setBackground({Colaor bg)
setFont{Font font)

setiaximumSize(Dimension
maximumsize)

settinimum5ize(Dimension
minimumsize)

setUl{ComponentUl newl)
setVisiblelboolean aFlag)
setForeground{Colaor fig)
getToolTipText(MouseEvent event)

getTopLevel Ancestor)

getTransferHandlen)

Java JComponent Example

import java.awt.Color;

import java.awt.Graphics;

import javax.swing.JComponent;

import javax.swing.JFrame;

Description

1t sets the ActionMap to am,
1t sets the background color of this component.
1t sets the font for this component.

1t sets the maximurmn size of this component to a constant value,

1t sets the minimum size of this component to a constant value.

1t sets the look and feel delegate for this component.
It makes the component visible or invisible,

1t sets the fereground color of this component.

1t returns the string to be used as the tooltip for event.

It retums the top-level ancestor of this component (either the containing Window or Applet), or

null if this component has not been added to any container.

1t gets the transferHandler property.

class MyJComponent extends JComponent {

public void paint(Graphics g) {

g.setColor(Color.green);
g fillRect(30, 30, 100, 100);

10.

}

11. public class JComponentExample {

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

public static void main(String[] arguments) {

MyJComponent com = new MyJComponent();
// create a basic JFrame
JFrame.setDefaultLookAndFeelDecorated(true);
JFrame frame = new JFrame("JComponent Example");
frame.setSize(300,200);
frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
// add the JComponent to main frame
frame.add(com);
frame.setVisible(true);
}
}
Output:
[)component Example & @ @

Text Components

The object of a TextField class is a text component that allows a user to
enter a single line text and edit it. It inherits TextComponent class, which further
inherits Component class. When we enter a key in the text field (like key pressed,

key released or key typed), the event is sent to TextField..

A S A L o T

S g S Y
Ll s

Constroctor

ITextField])
ITextField(String text)
JTextField(String text, int columns)

ITextField(int columns)

Commonly used Methods:

Methods

woid addAdionListener{ActionListener [)
Action getAction()

woid setFont(Font f)

woid removeActionListener|ActionListener)

Java JTextField Example
import javax.swing.*;
class TextFieldExample

{

Description

Creates a new TextField

Creates a new TextField initialized with the specified text.

Creates a new TextField initialized with the spedified text and columns.

Creates a new empty TextField with the specified number of columns.

Description

It is used to add the specified action listener to receive action events from this textfield

It returns the currently set Action for this ActionEvent source, or null if no Action is set.

It is used to set the current font

It is used to remove the specified action listener so that it no longer receives action events from this textfield.

public static void main(String args|[])

{

JFrame f= new JFrame("TextField Example");

JTextField t1,t2;

tl=new JTextField("Welcome to Javatpoint.");

tl.setBounds(50,100, 200,30);

t2=new JTextField("AWT Tutorial");

t2.setBounds (50,150, 200,30);
f.add(tl); f.add(t2);
f.setSize(400,400);
f.setLayout(null);

15.
16.
17.

f.setVisible(true);

}
}

Output:

"2 TextField Example T I (= = |

Welcome to Javatpoint.

AWT Tutarial

Menu

The object of Menultem class adds a simple labeled menu item on menu.
The items used in a menu must belong to the Menultem or any of its subclass. The
object of Menu class is a pull down menu component which is displayed on the

menu bar. It inherits the Menultem class.

ava AWT Menultem and Menu

The object of Menultem class adds a simple labeled menu item on menu. The items

used in a menu must belong to the Menultem or any of its subclass.

The object of Menu class is a pull down menu component which is displayed on the

menu bar. It inherits the Menultem class.

AWT Menultem class declaration

1. public class Menultem extends MenuComponent implements Accessible

AWT Menu class declaration

1. public class Menu extends Menultem implements MenuContainer, Accessible

Java AWT Menultem and Menu Example

1. importjava.awt.*;

2. class MenuExample

3. {

4. MenuExample(){

5. Frame f= new Frame("Menu and Menultem Example");
6. MenuBar mb=new MenuBar();

7. Menu menu=new Menu("Menu");

8. Menu submenu=new Menu("Sub Menu");
9. Menultem il=new Menultem("Item 1");
10. Menultem i2=new Menultem("Item 2");
11. Menultem i3=new Menultem("Item 3");
12. Menultem i4=new Menultem("Item 4");
13. Menultem i5=new Menultem("Item 5");
14. menu.add(il);

15. menu.add(i2);

16. menu.add(i3);

17. submenu.add(i4);

18. submenu.add(i5);

19. menu.add(submenu);

20. mb.add(menuy);

21. f.setMenuBar(mb);

22. f.setSize(400,400);

23. f.setLayout(null);

24. f.setVisible(true);

25.)

26. public static void main(String args[])
274

28. new MenuExample();

29.}

30. }

Output:

Java Clock class

Java Clock class is used to provide an access to the current, date and time using a

time zone. ,___ ___ It inherits the
£, Menu and Menultem Example
Object e : class.
Item 1 .
Because all date-time
ltem 2
classes ltem 3 contain a now()
function w that uses the
em
system clock in the
default " time zone,
using the | Clock class is
not : required. The
aim of the L=—= = 1 Clock class is

SN o e

to allow you to plug in another clock whenever you need it. Instead of using a static
method, applications utilise an object to get the current time. It simplifies the testing

process. A method that requires a current instant can take a Clock as a parameter.
Java Clock Class Declaration
Let's see the declaration of java.time.Clock class.

public abstract class Clock extends Object

Methods of Java Clock Class

Java Clock class Example: getZone()
ClockExamplel.java

import java.time.Clock;
public class ClockExamplel {
public static void main(String[] args) {
Clock ¢ = Clock.systemDefaultZone();
System.out.println(c.getZone());

}

7.

AR BN e

}

Output:

Asia/Calcutta

Java Clock class Example:

Method
abstract Zoneld getZone])
abstract [nstant instart{)

static Clock offset(Clock baseClock, Duration
offsetDuration)

static Clock system DefaultZone()
static Clock system UTC])

boolean equals{Object obj)

static Clock fixed({Instant fixedlnsiant, Zoneld

zone)

static Clock system{Zoneld zone)
int hashCode()

long millis()

static Clock tick{Clock baseClock, Duration

tickDuration)
static Clock tickiMinutes(Zoneld zone)
static Clock tickSeconds[Zoneld zone)

static Clock withZone[Zoneld zone)

ClockExample2.java

import java.time.Clock;

instant()

Description

It is used to get the time-zone being used to create dates and times.

It is used to get the current instant of the clodk.

[t is used to obtain a clock that returns instants from the specified clodk with the specified duration added

It is used to obtain a clock that returns the current instant using the best available system clock, converting

to date and time using the default time-zone,

It is used to obtain a clock that returns the current instant using the best available system clock, converting

to date and time using the UTC time zone,
It checks if this clock is equal to another clock

It obtains a clock that always retums the same instant.

It obtains a clock that returns the current instant using best available system clock.,
[t gets the time-zone being used to create dates and times.
It gets the current millisecond instant of the clock

It obtains a cock that returns instants from the specified clock truncated to the nearest occurrence of the
specified duration.

It obtains a clock that returns the current instant ticking in whaole minutes using best available system clock.
It obtains a clock that returns the current instant ticking in whole seconds using best available system dock.

It returns & copy of this clock with a different time-zone,

public class ClockExample2 {

public static void main(String[] args) {
Clock ¢ = Clock.systemUTC();

System.out.println(c.instant());

https://compiler.javatpoint.com/opr/test.jsp?filename=ClockExample1

6. 1
7.}

Output:

2017-01-14T07:11:07.748Z2

Java Clock class Example: systemUTC()
ClockExample3.java

import java.time.Clock;
public class ClockExample3 {
public static void main(String][] args) {
Clock ¢ = Clock.systemUTC();

System.out.println(c.instant());

}

}
Test it No

N S ok o

Output:

2017-01-14T07:11:07.748Z

https://compiler.javatpoint.com/opr/test.jsp?filename=ClockExample2
https://compiler.javatpoint.com/opr/test.jsp?filename=ClockExample3

